FLOWNEX SE 8.12.6 (2020 – UPDATE 2)

FLOWNEX SE 8.12.6 (2020 – UPDATE 2)

The second update of Flownex® SE for 2020 further expands the possibilities of simulating real-world systems.

Exciting features for this update are a reworked deep solver coupling with Ansys Mechanical for explicit transient co-simulation and automated Nuclear Reactor building script along with many minor enhancements described below.



Ansys Mechanical Coupling

The Ansys Mechanical Flow Solver Coupling component has been improved to allow the simulation of complex 3D conduction and stress in Ansys Mechanical coupled to a flow and heat transfer simulation in Flownex®. This enhancement includes the addition of a deep solver coupling between Flownex® and Ansys Mechanical, allowing data exchange between iterations, full transient co-simulation functionality and unit integration.
Figure 1: Ansys Mechanical Coupling

Nuclear Reactor Builder Scripts

Script Generated Reactor Results

Results in tabular form corresponding to the grid layout of the generated reactor network are written to a text file in the ScriptResults subfolder of the project folder. The tabular results are reported at the end of a steady state run as well as during user specified times and at the end of transient runs. A feature is provided to specify output variables that are reported at every time step. These results are written to a comma separated values (csv) file as a time series residing in the ScriptResults subfolder.

Reactor Generation Script

Various improvements were made to the geometric parameter calculations. Network topology generation for the transitions between different types of reactor zones was extended.

Figure 2: Reactor Generation Script Enhancements



The “Description”, “Minimum” and “Maximum” values have been added to the imported FMU variables. The description will be displayed if it is not blank. Minimum and maximum values will be displayed if they are specified in the FMU and the “Display variable information” property is turned on. A warning is given if the minimum or maximum values for inputs are exceeded.

Figure 3: Description, Minimum and Maximum Values added to Imported FMU’s


The License modules selection have been updated so that it can work for users that do not have write access to their ProgramData folders.


  • Functions to retrieve minimum and maximum temperatures and pressures, as well as critical temperatures and pressures from two-phase fluids via Scripts have been added.
  • Added the ability for Scripts to properly work with lists and Snaps – functions were added that get called in the Script before and after loading and saving Snaps. This gives users flexibility to implement their own Snap saving and loading code.

Composite Heat Transfer Component

The “Area multiplication factor” input for the Composite Heat Transfer (CHT) component has been moved to a separate category to indicate that the input is applied to all surfaces.

Figure 4: Area Multiplication Factor Moved to Separate Category



Fixed the problem where many of the modules were missing when using a borrowed license from the server.

Find Dialog

Fixed the problem where the Find dialog did not open the property page for components on closed pages (it appeared that multi edit did not work).


Line Graph: Removed trailing list separator from the ‘Save As CSV’ file rows.


  • Fixed the Solid Properties script, as the script did not compile correctly due to the enthalpy function that was removed.
  • Fixed the problem where properties for two-phase non condensable mixtures returned zero values as results in the Mixed Fluid Properties Script.

Solver Results

Fixed the problem where the Fluid volume and Fluid mass results in the Flow Solver Results window did not update when it was linked to an Action or displayed on the canvas.

Composite Heat Transfer Component

  • Fixed the problem where an error was issued when connecting the Composite Heat Transfer element to non-pipe flow elements because the roughness could not be determined when the Dittus-Boelter option was specified.
  • Fixed the Composite Heat Transfer element StPr chart option not allowing the user to specify the flow area.
  • Fixed the Reynolds number result on the Composite Heat Transfer element for StPr chart input option not displaying correctly.

FLOWNEX SE 8.12.5 (2020 – UPDATE 1)

FLOWNEX SE 8.12.5 (2020 – UPDATE 1)
The new Update to Flownex® SE for 2020 expands the possibilities of simulating real-world systems. Some exciting features included with this release include: built-in functionality to generate system resistance curves within seconds, force calculations for pipe sections, interfacing with CAESAR II for detailed pipe stress analyses, a co-simulation link to the latest version of 6SigmaDCX, along with many other improvements that are listed below.



System Resistance Graphs

The capability has been added to easily plot system resistance graphs. At the click of a button, a parametric run is automatically configured and executed providing the user with an accurate system resistance graph in seconds, as seen in Figure 4. The system resistance graph can be exported as a CSV file in a few clicks and sent to a manufacturer for pump selection. The system resistance graph can also be plotted on a pump chart allowing the user to quickly determine operating points at different pumps speeds.
Figure 3: System Resistance Graph added to Operating Point Plots.
Figure 4- System Resistance Curve and Pump Curve Plot

Force Calculations for Piping Sections

It is not possible to perform structural pipe analysis for water hammer scenarios in most real world systems using hand calculations due to the complex nature of the pressure wave reflections. Flownex® already provides the capabilities to simulate fast transients such as water hammer in these complex systems. In this release, enhancements have been made to the axial pipe force calculations to make them valid for all steady state and transient simulations. This allows users to easily simulate the pipe forces in Flownex® and export the results to structural codes such as ROHR 2 and CAESAR II. Pipe sections for net force calculations can also easily be defined in the “Force Calculation Piping Sections” dialog that is available under the Results menu.
Figure 5. Calculated Pipe Forces in Flownex
The enhanced force calculations are applicable to Pipes, Bends, Valves, the British Standard Orifice, Secondary Loss and the General Empirical Relationship components.

CAESAR II Integration

Flownex® provides a very easy to use interface to work with CAESAR II. By using this interface Flownex® can calculate dynamic loads for pipe stress simulations for water hammer cases or pressure waves. The interface allows a user to import the geometry for a piping system from CAESAR II directly into Flownex®. This saves a user time and also eliminates possible errors that could occur when users need to manually duplicate piping systems in Flownex®. Flownex® also provides an intuitive way to define the piping sections for which users wants the net forces to be calculated. These calculated forces can be automatically exported in a time series that is easily imported into CAESAR II.
Figure 5- Imported Pipeline and Calculated Pipe Forces in Flownex.
Figure 6- Forces Imported to CAESAR II.

6Sigma Link

6Sigma is a world leading tool for data centre simulation and a link to 6Sigma has been added. The link allows users to quickly setup combined simulations and allows both steady state and full transient simulations. Typically, a detailed model of the inside of a data centre can be connected to a complete external cooling model in Flownex®, where all the cooling towers, pumps, heat exchangers etc. is modelled in detail. This allows a complete system simulation that is not available in other software and opens up a whole new spectrum of possible efficiency improvements in both design and operation mythology.
Figure 7- 6Sigma Link Example.

Nuclear Reactor Building Scripts

The ability has been added to build a nuclear reactor using a script. This script reads information from a reactor geometry chart and builds a corresponding reactor. The reactor is built on a separate page in the user interface. Users have access to all of the elements and nodes that defines the reactor.

There are several advantages using this capability. The first advantage is that all the inputs to the elements and nodes that build the reactor can be verified. Furthermore, all internal results are available and finally, the internal connectivity and structure can be manually modified by users if needed.

 Example scripts are available on request. Some components have been added to aid in the reactor building, which include a Porous Flow Element and a Composite Conduction component. They are found in the Reactor Building Blocks category in the Nuclear library, as seen in Figure 9.

Figure 8- Generated Reactor using the Nuclear Reactor Building Scripts.
Figure 9- Composite Conductivity and Porous Flow Element added to Nuclear Library.

Relap Component

The Relap component has been updated to work with newer versions of Relap. Newly updated examples are available on request.

Angled T-Junctions and Y-Junctions

The existing junction functionality has been enhanced to include the ability to model angled T-junctions and Y-junctions, as seen in Figure 1.

Many of the junction losses as defined in “Internal Flow Systems, 2nd Edition” by D. S. Miller have been implemented, thereby extending the previous functionality from the limited perpendicular junction options. These junctions are available for selection from pre-defined junction types, as seen in Figure 2.

Figure 1: T-Junction and Y-Junction Components in Flownex®.
Figure 2: Junction Branch Angle Options for Converging T-Junctions.

Mathcad Component

A new Mathcad link has been added to work with Mathcad Prime version 4.0, 5.0 and 6.0.
Figure 10- Mathcad Prime Link

Graph Improvements

Graphs that have been disabled, now shows a red cross on them to easily identify disabled graphs, as seen in Figure 11. The “Save As CSV” option has been added to all graph types and is available on the context menu of a graph, as seen in Figure 12.
Figure 11-Disabled Graph in Flownex®.
Figure 12- “Save As CSV” Option added to Graphs.

Licensing System

The licensing system has been updated to Version 14. Subsequently all users using server licenses will need to install Version 14 of the license server. An installer that does the upgrade is available to download from our website or from Support. There are several fixes in the newer version of the license server. More information about the fixes is available on the RLM website.

Trace Elements

The trace element modelling capability has been significantly expanded. Previous versions only allowed for homogeneous mixing of trace elements on nodes, where users now have the following additional capabilities at their disposal:

  • The ability to filter trace elements from the network.
  • The ability to specify selective throughflow of trace elements between nodes, thus resulting in non-homogenous mixing of trace elements within nodes.
  • The ability to specify trace element sources and sinks on nodes without the precondition that they enter or leave the system via mass sources or sinks defined for the carrier fluid.
  • Modelling trace element decay during transients using the trace element decay constant.

Filtering and selective throughflow of trace elements are specified on flow element components and sources or sinks and decay are specified on node components, as seen in Figure 13.

Figure 13- New Trace Element Input Options on Nodes.

Isentropic Head Compressor

A new compressor type has been added specifically for modelling compressors operating near the critical point of the fluid with significant changes in fluid properties such as the specific heat, making the use of conventional gas flow dimensionless parameters less accurate. The Isentropic Head Compressor uses isentropic head vs. volume flow data at different speeds. Given the volume flow and speed, the isentropic head is interpolated from the characteristic curve, after which real gas entropy tables are used to find the corresponding pressure.
Figure 14- Isentropic Head Compressor in the Turbos and Pumps Library.


Video Tutorials

The video tutorials can now be played with a built-in player in Flownex® eliminating problems of browser compatibility. Adobe Flash player needs to be installed for the player to work.

Result Layers

For gradient result layers, components were not coloured when they had properties smaller than the minimum value or larger than the maximum value. A new option has been added namely: “Gradient <-[MinValue, MaxValue]->”, as seen in Figure 15. With this option the components with properties lower than the minimum value is painted the minimum colour and components with properties higher than the maximum is painted the maximum colour. This option is now set as the default option.
Figure 15- Gradient Option in Result Layers.

Property Grid

Disabled input properties did not allow users to change their units. This has been changed since these fields display valuable information which users may want to view in different units, as seen in Figure 16.
Figure 16- Units Can be Changed for Disabled Properties.
Figure 17- Toggle Button for Properties.

Screenshot Preview

The screenshot preview that displays in Windows Explorer when the preview pane view is activated, has been updated. In the past, the entire Flownex® window area was captured and sometimes it included overlapping windows. Now only the main item inside Flownex® is captured in order to show the most relevant view of the project, as seen in Figure 18. 

Figure 18- Screenshot Preview.

Psychrometric Boundary Condition

The “Not specified” option as a Boundary condition type, has been added to the Psychrometric Boundary Condition. This option has been added so that the specified condition can be unfixed during a transient simulation.
Figure 19- Not Specified Option for the Psychrometric Boundary Condition.

Heat Transfer

The following enhancements has been made to the heat transfer components:

  • Implemented the option to calculate conduction area from the circumference of the connected pipe.
  • Made Kugeler-Schulten correlation available for the Convection element.
  • Implemented second order convection calculation for a Convection element connected to a Node. This allows convection calculations to be done using the mass weighed average upstream temperature of the flow elements connected to the node that the convection calculation is performed on. This functionality should result in faster grid independence for subdivided flow fields such as those used in a reactor geometry.
  • Implemented dispersion for porous flow elements to account for the enhance heat transfer resulting from the disruption of flow in porous media. The dispersion is modelled as increased diffusion heat transfer within the fluid.
  • Implemented length over diameter warning for Dittus-Boelter and two-phase flow applications.
  • Added the Overall convection heat transfer coefficient and Convection coefficient as results for Convection elements.


The following enhancements has been made to the Nuclear components:

  • Second order convection can be specified in the reactor chart.
  • Dispersion can be turned on in the reactor chart.
  • An error will be given when not all reactor ports that are defined in the chart are connected.
  • Added gamma_f0, gamma_m0 and gamma_x0 to the fuel reactivity, moderator reactivity, and Xenon reactivity equations to allow the user to specify a constant offset independent of the prevailing temperatures. 
  • Changed “Cross section x neutron flux” input in die neutronics chart to “Xenon cross section x neutron flux” to clarify the use of the input.
  • Implemented warning that normalized control rod insertion depth when upper or lower limit has been reached.
  • Updated “Reactivity” result description to “Control rod reactivity” to clarify its meaning.
  • Added warning if neutronics parameters such as Normalized Power, Normalized concentrations of neutron precursor isotopes, Normalized concentrations of decay-heat producing isotopes, Iodine concentration or Xenon concentration go negative and are limited to zero.
  • Changed point kinetics error condition to be issued if fission power equal to zero and reactivity greater than the decay neutron fraction, Beta.
  • Updated Kugeler-Schulten calculations to interpolate between Nusselt numbers calculated at Reynolds number = 100 and Nusselt numbers of 4 (at Reynolds number = 0) for Reynolds numbers smaller than 100 to correctly reflect the documented range of applicability of the Kugeler-Schulten correlation.


Implemented the ability to specify a solid material volume for “Solid Nodes”, as seen in Figure 16. This provides the ability to account for the thermal mass of solid nodes in an all solid heat transfer network such as those generated by the nuclear reactor model generating script.
Figure 20- Specify Node Solid Volume


Exposed fluid mixture component count so that it can be used in a script.

Heat Exchanger Component

The Effectiveness input on the Heat Exchanger Primary component, as seen in Figure 21, is now a dynamic input and can be changed during transient simulations. An option has been added to change the two-phase region error that is given when the heat exchanger operates in the two-phase region to a warning, instead of an error. This allows users to use the heat exchanger in the two-phase region if required. The new option can be seen in Figure 22.
Figure 21- Effectiveness Input on Heat Exchanger Primary Component.
Figure 22- Treat Heat-Exchanger in Two-Phase Errors as Warnings Option in Flow Solver.


Turbine chart scaling factors are now a value of 1.0 by default on new charts, as seen in Figure 23.
Figure 23- Turbine Chart Scaling Factors for New Charts.


The following enhancements has been made to fluid mixtures:

  • The capability has been added to specify a mass sink with mass fractions specified to nodes that are internal to a network. This allows for the selective removal of fluid components from a fluid stream to model the action of a filter or membrane. This functionality is not available on boundary or edge nodes as the transfer of mass is an advection problem and boundary conditions cannot be propagated in the opposite direction to the flow.
  • Psychrometric results are calculated for all two-phase non-condensable mixtures featuring Water as the two-phase fluid.


The amount of iterations during steady state that is solved before iterative scripts or data transfers start being executed can now be specified in the Flow Solver settings, as seen in Figure 24. The default value is 6 – meaning that the scripts and iterative items will start executing at iteration 7 of the pressure solver (main iterations).
Figure 24- Iterative Scripts Calculations and Data Transfer Settings in the Flow Solver.


The API now provides users with the ability to create copies of components and links. Several functions have been added to the NetworkBuilder interface in order to facilitate this. These functions are documented in the API help file. Examples of how to use these functions have been added to the “NetworkBuilderScripts” demo project located under Demo Networks on the Flownex® Start Page. The Python example “3. Simple Network Builder” has also been updated to show how to use these functions. This example is available in the Help menu under Python Link.


Added the capability to specify an angle for the Louver parallel and opposed 3V blades damper types.



Fixed problems where Flownex® crashed when a user deleted a project and its sub directories in Windows Explorer, after the project was closed but Flownex® still open.

Container Interface

Fixed a bug where flow still occurred even when the level of the Container Interface was at zero. 

Heat Transfer

Limit the emissivity on the Surface Radiation component to values between 0 and 1. 

Iterative Scripts

Fixed the problem where Iterative Scripts did not start running until a certain convergence has been reached.


Fixed the problem where the Temperature guess value specified on a mass sink results in a flow solver error.


Fixed the bug where the K Calculation dialog sometimes showed inputs from a different pipe.


The Steam/Water trap was not added to a default report, this has been fixed.

Results Layers

Fixed the problem with painting Result Layers when a user has disconnected links, as parts of the network was not shown at all.

Shell and Tube Heat Exchanger and Finned Tube Heat Exchanger

Fixed the Pressure Drop Excluding Elevation Result, as the result changed with number of tubes specified in parallel.

Download full release notes here.

FLOWNEX SE 8.11.1 (2020)

FLOWNEX SE 8.11.1 (2020)
The latest Flownex® SE 2020 Release opens up new possibilities for modelling complete HVAC systems. Exciting new features include an all new ducting components library based on ASHRAE standards, the psychrometric boundary condition and psychrometric chart, flow paths and property graphing, overall performance improvements and much more.  Be sure to have a look at the full list below. Students can also benefit from the new features as the latest Flownex® SE 2020 Student Version is also available to download from our website.



Ducting Components

Many heating ventilation and air conditioning related components, including ducts, transitions, dampers, junctions, combiners, elbows, screens, entrances and exits have been added to the Flownex® component database, as seen in Figure 1. These components allow for easy modelling of HVAC ducting systems in line with the ASHRAE standards.

Fig 1 Ducting Components
Fig 2 Ducting Components used in HVAC Tutorial

Volume Flow Boundary Conditions

The boundary condition specification options have been expanded to include the specification of volume flow boundary conditions, as seen in Figure 3.  The volume flow specification will be used to calculate the equivalent mass flow boundary conditions commensurate with flow conditions.  The thermodynamic condition can be based on the current node conditions or user specified reference conditions.

Fig 3 Volume Flow Boundary Conditions

Psychrometric Boundary Conditions

It is customary in HVAC applications to specify psychrometric boundary conditions for moist air.  A new Psychrometric Boundary Condition is available in the Nodes and Boundaries Library, as seen in Figure 4.

Flownex® now allows for the specification of wet bulb temperature, relative humidity and humidity ratio for moist air mixtures in addition to the psychrometric results that are available for two-phase non-condensable mixtures.  The calculation of wet-bulb temperature has been extended to include frost bulb temperatures. 

A new fluid named Humid Air has been added to the Mixed Fluids in the Master database for use with the Psychrometric Boundary Condition component.

Fig 4 Psychrometric Boundary Condition
Fig 5 Psychrometric Boundary Condtion Inputs

Psychrometric Charts

A psychrometric chart can now be plotted for humid air. The psychrometric chart together with plotted component operating points can assist the user to graphically analyse the psychrometric processes of a system.

Fig 6 Psychrometric Chart

Graphs Through Flow Paths

The ability to plot a property, for example, the total pressure through a network has been added.

The property of components along a defined flow path is plotted.  Flow paths can be defined by selecting the start and end components of the flow path. The context menu can then be used to quickly define a new graph.

Fig 7 Flow Paths in the Results Ribbon
Fig 8 Flow Path Graph

PH Diagram

The option to plot a pressure and enthalpy diagram for two phase fluids has been added, as seen in Figure 8.
The pressure-enthalpy operating point of a component using the Fluid Property Graph can therefore be plotted.

Fig 9 Pressure vs Enthalpy Diagram Option
Fig 10 Pressure Enthalpy Diagram

FMI Master Capability

Further support for the FMI standard was added to Flownex®. Flownex® can now serve as an FMI master for version 2.0 compatible FMUs. It can import both model exchange and co-simulation FMUs. FMUs are added as components in the project library and are used like any other simulation component. These FMUs can be used in both steady state and transient simulations.
Fig 11 FMI Master Capability

Result Layer Improvements

The Result Layers has been updated to show density, energy source, mass source and an indication if choking is present, as seen in Figure 10.

The result layers were also improved to shade the area over the connecting fibres between nodes and elements, which makes it much easier to see the results graphically in large networks.

Fig 12 Improved Result Layers


Performance Improvements

Working with large networks was optimised. Several improvements were made to decrease the time associated with opening large networks and selecting parts of the network. The initial time associated with opening Flownex® has been improved, as well as the time associated with opening networks. The time associated with assigning fluids in large networks has also been improved.

API Improvements

  • Added the ability to create data references through the API. This allows users to create charts such as pump charts, valve charts, etc. by using the API alone.
  • Added a Python example to demonstrate adding charts through the API.
  • Added a demo network example to demonstrate adding charts via C# scripts inside a project.
  • Added Visual Studio 2019 compatibility to the extendibility feature.
  • Made it possible to set the chart and other non-double properties on components using the MATLAB coupling.

Script Editor Improvements

One of the best ways to quickly generate a script is by using a Quick Script component. By using the Quick Script to add all the variables you need and then clicking the show entire script button, you can then copy and paste this code to an ordinary script to customise it further. To make this process easier, buttons and context menu items were added to the script dialog to select and copy script code in the Script Editor.

Intellisense has been added to function scripts like the Pipe Friction Factor script and the Heat Transfer Coefficient calculation scripts.

Search and replace functionality were added to all the script editors. Press Ctrl+F to activate the search dialog or Ctrl+H to activate the Replace dialog.


Fig 13 Copying and Pasting Code in the Script Editor
Fig 14 Example of Intellisense added to Friction Factor Script
Fig 15 Example of Find and Replace Functionality added to Scripts

Quick Scripts

Several additional property types were added to the Quick Script – this include data references, component and property selectors. The primary reason for this was to make it possible to use fluid functions in the Quick Script as well as properties from other components.

Fig 16 Property Types added to Quick Script

Example Scripts

An example script that interpolates on a 4D Generic Chart has been added – this is a good generic way to easily add lookup tables to simulations.

The example scripts were changed so that they are not contained inside compounds anymore. This makes it easier to see the actual script code as well as to modify the scripts. The compound-based example scripts are still available in a category called “Legacy Compound Scripts”, as seen in Figure 17.

Fig 17 Interpolation Script added to Example Scripts

Iterative Scripts

  • The scripts will now only start executing once an initial flow field has been established. This is usually after five iterations depending on the solver settings.
  • A function has been added so that a user can specify whether data transfer should happen after the initialise method and before solving the Flow Solver components.

Parameters Tables

  • The user can now set Data Reference Properties, Integer, Boolean and Option Properties from Parameter Tables.
  • In order to distinguish between Result and Input parameters in a parameter table heading, the results parameters are shown with a darker grey colour.
  • The layout has been improved for Parameter Tables with different DPI screens and custom screen scaling.
  • The Parameter Table active conditions drop down now only shows the first thousand items. This was done to increase GUI performance when using very large Parameter Tables.


When saving details for a server license the Node Locked license details are now reset and vice versa. This makes it easier to switch between Server and Node Locked licenses.


  • Added the ability to change fluid property/characteristic graphs axes units.
  • Added the ability to plot the convection/radiation properties of a Composite Heat Transfer or a Distributed Heat Source along the length of one of the connected pipe components. Previously all points were plotted at the same length.
  • Added borders to graphs. White (hidden) by default.

GIS Importing

Added several new online map sources, as seen in Figure 18.

Fig 18 Examples of Online Map Sources added

FlownexSE Console

The console version of Flownex® can now be used to run parametric studies or sensitivity analysis. The user can specify the command line parameter -sensitivityandparametric to run the current active sensitivity analysis configuration in a project.

Nuclear Reactor

  • The Nuclear Reactor now allows the use of multiple Pebble Bed Fuel Zones in transient cases. Previously the chart based neutronics implementation only worked in transient cases for one fuel zone.
  • Added an error when the sum of fractions for heat input for all the zones in the nuclear reactor does not equal one. For cases when the sum is zero, this will be a warning only.
  • Added toggle buttons to ribbon menu to easily turn on and off result file generation settings, as seen in Figure 19.
Fig 19 Generate after steady state and generate after transient toggle button

Heat Exchangers

Added secondary loss inputs to the primary and secondary side of the Plate Heat Exchanger component.

Solver Properties

  • Added lower limits for the following inputs:
    • Number iteration Temp1
    • Number iteration Temp2
    • Number iteration Temp transient.
  • Changed name of “Use iterative temperature solver” input to “Use BiCG matrix solver for energy equation solution”.
  • Add properties on the Scheduler to indicate if warnings and errors have occurred. These properties can be used in parametric studies etc. to monitor success of solving over all the runs. The warning and error count were also added as properties.

Distributed Heat Source

  • Added the ability to specify the heat input associated with the Distributed Heat Source component using a local specification option.
  • Added errors and warnings for the Distributed Heat Source when incorrectly connecting Distributed Heat Source components to each other or when the Distributed Heat Source is over specified.
  • Fixed problem with heat fractions not being applied during transient for distributed heat source.

Jet Pump Component

Added loss coefficient results to the Jet Pump component.


  • The Momentum addition inputs will now only be available on pipes and not on all components.
  • Implemented warning when small L/D values are used along with Dittus-Boelter and also for two phase flow.

Boundary Condition

  • Added the option to allow the specification of mass source conditions with fixed temperature/enthalpy, hereby allowing energy source calculations that are not based on ambient conditions.

Secondary Loss Component

Extended secondary loss component modelling capability to include Liquid-Gas mixtures, particularly for modelling oil-air mixtures in gas turbine lubrication systems.

Nozzle and Rotating Nozzle

Implemented input area option on Nozzle and Rotating Nozzle components, allowing for non-circular orifice shapes.

Labyrinth Seal

Added results for increments in discretized Labyrinth Seals.

Jet Impingement Convection

Removed upstream cross flow link in Jet Impingement component and instead use net inflow to fluid node. This enables modelling networks with jet impingement where the flow direction of the cross-flow stream is not pre-determined, but forms part of the solution.

Rotor-Stator and Rotor-Rotor

Added disk area results for increments in cavities. This allows more detailed heat transfer modelling and calculating thrust forces.


Added gauge pressure result.

All Element Types

Added humidity ratio result on all elements when used with the Humid Air fluid.

Validation Pack

The following items were added to the  Validation Pack:

Custom Losses
  • Flow Resistance
  • Secondary Loss
  • User Specified Pressure Drop
  • User Specified Pressure Ratio
  • Cross Junction
  • Damper
  • Duct
  • Elbow
  • Entrance
  • Exit
  • Obstruction
  • Transition
Heat Exchangers
  • Finned-Tube Heat Exchanger
  • Plate Heat Exchanger
  • Shell & Tube Heat Exchanger
Heat Transfer
  • Distributed Heat Source
  • External Pipe Heat Transfer


  • Slurry Networks
Nodes and Boundaries
  • Psychrometric Boundary Condition
  • Volume Flow Boundary Condition
  • Nuclear Reactor
  • PBMM
Rotating Components
  • Custom Vortex
  • Forced and Free Vortex
  • Labyrinth Seal
  • Rotating Annular Gap
  • Rotating Nozzle
  • Rotor-Rotor Cavity
  • Rotor-Stator Cavity
Turbos and Pumps
  • Turbine and Compressor
  • Basic Valve
  • Check Valve
  • Control Valve with Loss Coefficient
  • Pressure Regulating Valve
  • Pressure Relief Valve


General Stability

  • When solving was disabled on components a crash happened after solving a second time and then saving the network. Several other actions also lead to a crash after disabling solving on components and then solving the network, which has been fixed.
  • Changed reactor fluid assignment from recursive to non-recursive to avoid a stack overflow for very large reactor sub-networks.


  • Fixed unit for kJ/mol where it appeared as kJ/kmol.

Parameter Tables

  • Fixed problem where the order of columns was not remembered when saving and reloading.
  • Fixed problem when reordering the inputs in a Parameter Table did not reorder the columns correctly.
  • Fixed problems when creating a copy of a parameter table, as the result parameters were changed to input parameters.

Data References

  • When a data reference was not found while loading compounds the way the error was reported made it difficult to pinpoint the source by double clicking on the error. This has been fixed.
  • Implemented a system where dynamic properties of charts gets saved to the project and to the snaps. This is done for charts in all databases. For instance, if scaling factors are changed from the chart property grid they will now be saved correctly.


  • Made CSV export for graphs work with different locales.
  • Fixed incorrect scaling on secondary Y-axes.
  • Added missing flow regime labels on the two-phase flow regime graphs.


  • Fixed the problem where the manual did not contain all the functions in the API.
  • Fixed the problem where constructing compounds using the displayed type name sometimes did not work.
  • Made properties such as Ck, Beta and Alpha of heat exchanger charts editable through API. 

Compound Components

  • Add the ability to drop tooltip properties in the middle of the list when setting up tooltips – they were incorrectly added to the bottom previously.


  • Removed repeat option from actions – it was not used and did not function correctly. Repeating behaviour should rather be implemented using scripts.

GIS Importing

  • Fixed importing for some locales were the comma separator caused problems while retrieving elevations from google.
  • Fixed bug where identifier text etc. were sometimes displayed in reverse.


  • Fixed crash when running Designer etc. and a component that was used as part of the setup has been deleted.


  • Fixed the problem where increments in results did not update immediately on pipes when changing the number of increments.
  • Fixed “micro meter” spelling mistake in the Roughness Editor.
  • Fixed Transient and water hammer related results category wording on pipe.
  • Added convergence check for choking with unrealistic short pipe lengths in two-phase flow. In such cases the solution might have appeared to be converged, but actually required more iterations to accurately determine whether the choke point is reached or not.

Nuclear Reactor

  • Fixed the problem where an error was issued with the General Fuel Zone due to a material not being assigned when it should not be issued.
  • Fixed problem where reactors using the same neutronics chart gave the same results no matter what inputs were specified.
  • Fix problem where if you clicked in Top Height field for a row in the advanced reactor and it was negative, where the user needed to terminate Flownex to continue.
  • Several fields did not commit their data correctly in the editors for the Advanced Reactor.
  • Updated fractional heat assigned to subdivided zones.
  • The horizontal and vertical permeabilities are now correctly applied to the various zone types.
  • Convection heat transfer results were updated to include all flow convection flow paths for pebble bed and general fuel zones—this does not impact the solution.
  • Fixed error in the calculation of maximum moderator temperatures for general fuel zones.
  • Addressed code issue when a permeability value of zero was set to a solid with 1D vertical flow zone.
  • Fixed reactivity output units.
  • Added warning when user supplies a zero hydraulic diameter corresponding to a non-zero permeability.
  • A default value of 1 has been assigned to the heat fraction, and coefficient 0 of the axial and radial power profiles on the power distribution dialog.
  • Fixed sub-zone mass flow units.
  • Fixed an error in the height assignment of a single cavity that is in a sub-divided row.
  • Fixed Pebble Bed flow node volumes when DW friction losses are selected.
  • Added convection and conduction areas, length and height outputs in *.arr file.
  • Added porosity to the Reynolds number calculation to correctly use the local superficial velocity in the Kugeler-Schulten pressure drop correlation.
  • Changed friction factor result for packed bed flow elements so that it is based on the actual velocity and not the superficial velocity.
  • Changed static pressure calculation to use actual (not superficial) velocity for pebble bed elements with non-zero solid fractions.

Version Upgrading

  • Fixed upgrade of Cooling Orifice to Nozzle – fixed the transfer of area, number in parallel and Cd value.
  • Decreased the time of upgrading a Flownex project file to a newer version – some unnecessary files were checked during upgrading.
  • Fixed upgrade of compounds that contained some of the fields used in H calculation and Primary loss calculation.

Rotating Components

  • Disabled inputs on Rotor-Rotor and Rotor-Stator that are set from the Cavity Editor when using the Cavity Editor tool.
  • Fixed problem where the axial measurement of gap width and shroud used the radial measurement in the cavity editor.
  • Fixed static enthalpy calculation for reverse flow in Rotating Channel and Rotating Nozzle.
  • Changed Daily & Nece correlation in cavities to use outer radius for density and viscosity in Reynolds number definition.

Rotating Components

  • Fixed upgrade of Cooling Orifice to Nozzle – fixed the transfer of area, number in parallel and Cd value.
  • Decreased the time of upgrading a Flownex project file to a newer version – some unnecessary files were checked during upgrading.
  • Fixed upgrade of compounds that contained some of the fields used in H calculation and Primary loss calculation.

Heat Exchangers

  • Fixed heat exchanger components that should not allow heat transfer to them from other components via generic heat transfer components.
  • Fixed elevation input for Cooling Tower and Bulk Air Cooler.
  • Fixed surface temperature result for Plate Heat Exchanger primary and secondary not showing correct results.


  • Fixed problem with enthalpy and viscosity being incorrectly reported in writing out data from material test dialog.
  • Report fluid type correctly in writing out of data from material test dialog.
  • The option was removed to specify the specific heat for fluids in a script.
  • If enthalpy is specified in a script and no inverse function is defined a Newton Raphson is done to determine temperature from enthalpy.
  • Fixed the calculation of enthalpy from the option where specific heat is specified as polynomial equation that resulted in unrealistic temperatures on account of the enthalpy being capped instead of extrapolated when used out of range.


  • Fixed problem where the direction of drawing influenced results on Butterfly Valves.

Turbo Machinery

  • Fixed showing of speed options with enabling and disabling of Shaft links on Basic Centrifugal Pump.
  • Fixed Simple Turbine tooltip not showing.
  • Plot head excluding elevation on operating point plots so that they are shown correctly on pump curve.
  • Improved speed line extrapolation in turbo machine charts to use an average gradient calculated between the two closest speed lines, instead of allowing this gradient to change over the reach of the mass flow axis. This leads to much more realistically shaped extrapolated speed curves, with corresponding improvement in solver convergence.

Steam Turbine Group Efficiency

  • Changed warning for Steam Turbine Group Efficiency calculation, in the event that the pressure is outside of the validity range, to be issued only for the governing stage where it is applicable.


  • Tooltip added to Friction Loss and Motor/Generator components.

Heat Transfer Coefficients

  • Fixed upper limit Rayleigh number warning for free convection coefficient correlation over a horizontal cylinder to be 1e12 instead of the previous incorrect value of 1e13.
  • Implemented non-zero lower limits for laminar and turbulent friction factors.
  • Rounded Gr and Ra numbers reported in warnings to reduce duplication of warnings.

Secondary Pressure Loss Component

  • Fixed Secondary Pressure Loss choked flow calculation when flow area is different from choking plane. The choking plane is now calculated (either upstream area, downstream area or element flow area), and not assumed to be coincident with the element flow area.

Boundary Conditions

  • Added warning when a mass source is specified without associated temperature specification.

Hydraulic Grade line and Energy Line Results

  • Changed hydraulic grade line and energy line results to use gauge pressures and not absolute pressures. This is more consistent with typical industry application where these results are used frequently, such as slurry flows.

British Standard Orifice

  • Removed choking result from British Standard Orifice since it is not applicable.

Composite Heat Transfer Elements

  • Added warnings when incremented Composite Heat Transfer components are connected to non-incremented heat transfer components resulting in a mismatch in the number of increments.
  • Changed solid node temperature result with multiple increments to reflect averaged temperature of the surface.

Flow and Solid Nodes

  • Fixed flow node Heat source result that incorrectly displayed twice the user specified heat input under some configurations.
  • Fixed Solid Nodes incorrectly displaying inputs for radial pressure boundary and trace elements.

Flow Resistance

  • Fixed Flow Resistance square root input option that did not converge for reverse flows.

Open Container and Vented Container

  • Changed steady-state behaviour for Open and Vented Container to issue an error after the solution is done and there is flow exiting from above the level in the container. Previously a check valve was activated during the solution process, but this gave rise to diverging solutions.

Incremented Elements

  • Fixed incremented elements not updating incremented node elevations correctly when connected to tanks and containers.
  • Fixed incremented elements not updating incremented nodes swirl properties correctly when these elements are specified to rotate at machine speed.

Download full release notes here.